Next Generation Nuclear Plant (NGNP)

Office of
Gas Cooled Reactor Technologies
(NE-73)

Carl Sink
NGNP Program Manager

March 21, 2012

Mission and Program Objectives

Mission: Demonstrate high-temperature gas-cooled reactor (HTGR) technology to produce electricity and high temperature process heat

Program Objectives

- Partner with industry to commercialize HTGR technology
- Collaborate with the Nuclear Regulatory Commission (NRC) to establish a licensing framework for HTGRs
- Draw upon the national laboratories, universities, and international community to perform the Research and Development (R&D) necessary to decrease the technical risk

Potential Contribution of Fission Reactors to Process Heat Industries

NGNP – Features and Characteristics

Nuclear Energy

- Helium cooled noble gas does not chemically react
- High outlet temperature 750 C or greater for high energy conversion efficiency and process heat uses
- Coated particle fuel excellent fission product retention under operating and accident conditions
- Passive safety features ensure public health and safety
- Small to medium power output good fit for industrial applications
- Improved fuel utilization up to three times the burnup of light water reactors

Comparing HTGRs to LWRs

Nuclear Energy

Material HTGR LWR

Fuel UCO, TRISO UO₂ Pellets

Fuel clad PyC/silicon Zircalloy

carbide

Coolant Helium Water

Structural material Graphite Steel

Moderator Graphite Water

Core coolant exit temp. 750°C 310°C

Power density, w/cc 6.6 60

Linear heat rate, kW/ft 1.6 19

Fuel damage temperature >2000°C 1260°C

Core Structural Damage >3000°C 1500°C

TRISO Fuel Components / Purpose

Nuclear Energy

TRISO = Tristructural-isotropic

Fuel Kernel

Provide fission energy, Retain short-lived fission products

Buffer layer (porous carbon layer)

Attenuate fission recoils, Void volume for fission gases

Inner Pyrocarbon (IPyC)

Provide substrate for SiC during manufacture, Prevent attack of kernel during manufacture

Silicon Carbide (SiC)

Primary load bearing member, retain gas and metal fission products

Outer Pyrocarbon (OPyC)

Provide bonding surface for compacting,
Provide fission product barrier in particles with
defective SiC

HTGR Construction

TRISO-coated fuel particles are formed into fuel spheres for pebble bed reactor

08-GA50711-01

PRISMATIC CORE

Residual Heat Removal Paths (absent normal forced cooling)

A) Active Shutdown Cooling System

- B) Passive Reactor Cavity Cooling System
- C) Passive radiation and conduction of residual heat to reactor building (Beyond Design Basis Event)

TRISO FUEL TEMPERATURES DURING COOLDOWN EVENTS

Passive design features ensure fuel remains below 1600 C

TRISO Fuel Particle Robustness

Nuclear Energy

NGNP PROJECT STATUS

NEAC Review of NGNP Phase 1

- EPAct mandated review by Nuclear Energy Advisory Committee prior to proceeding to Phase 2
- NEAC Report forwarded to Congress October 17, 2011
- NEAC Recommendations
 - Continue Phase 1 R&D
 - Accelerate formation of public-private partnership to obtain end-user input
 - Continue to engage NRC to ensure regulatory framework is in place to support commercialization of this technology
 - Expedite deployment efforts

NGNP R&D

The Nuclear Heat Source Technology Development and **Qualification Needs**

High Temperature Materials Characterization, Testing and Codification

Graphite

Characterization, Irradiation Testing, Modeling and Codification

Testing

Fuel Qualification Program

Nuclear Energy

■ AGR-1

- Laboratory manufactured fuel
- Completed irradiation and completing PIE

■ AGR-2

- Commercially manufactured fuel
- Includes French and South African fuel
- Irradiation through June 2013

■ AGR-3/4

- "Designed-to-fail" fuel particles
- Irradiation through late 2013

Scaling Up Kernel Production Coating, Overcoating and Compacting Processes to Create a Pilot Line

Nuclear Energy

Sol-Gel Kernel Production

Lab Scale

Lab Scale 2 inch CVD Coating (60 g charge)

Riffle

Sieve

Table

Compact

Carbonize

Heat Treat

Kernel Forming and Drying

Industrial Scale 6 inch CVD Coating (2 kg charge)

Industrial Scale

Dry Mix and Jet Mill Matrix

Granurex Overcoat and Dry

Hot Press Compact

Carbonize + Heat Treat in one Sequential **Process**

Graphite Materials Qualification

■ Baseline measurements program

- "As fabricated" qualities
- Statistical sampling of slab layers

■ AGC-1 through -6

- Irradiation at varying temperatures and dose regimes
- Dimensional, strength and some thermal characteristics change after irradiation
- Capsule simulates in-service loading

Oxidation studies

- Engineering and material science issues need resolution
- Air and steam ingress evaluations

High Temperature Materials Qualification

■ Creep fatigue experiments at ORNL

- Developing appropriate code cases
- High temperature testing of materials under controlled conditions
- Work with ASME: Metal alloys that can withstand extremely high reactor outlet temperatures
 - 800H (iron-nickel-chromium)
 - Grade 91 steel (chromium–molybdenum)
 - Hastelloy XR (nickel-chromium-iron-molybdenum and N 617).
 - Work being carried out by ASME Standards Technology LLC

ASME Section III Division 5

Nuclear Energy

BPVC Section III-Rules for Construction of Nuclear Facility Components-Division 5-High Temperature Reactors

- All-new; provides construction rules for high-temperature reactors, including both high-temperature, gas-cooled reactors (HTGRs) and liquid-metal reactors (LMRs).
- Meant for components experiencing temperatures that are equal, to or higher than, 370°C) for ferritic materials or 425°C for austenitic stainless steels or high nickel alloys
- Includes new rules pertaining to graphite core components

Design & Safety Methods & Validation

Nuclear Energy

International R&D Collaborations

■ GIF Very High Temperature Reactor System

- Vice-Chair of Steering Committee along with China
- Participation in collaborative research on Fuels, Materials and Hydrogen Production

Bilateral Agreements

- Collaboration with Japan (JAEA) for HTTR test data (INL, under development)
- Collaborations with Russia on gas reactors in cooperation (PMDA, and 123)
- Potential bilateral cooperation with China being explored under PUNT
- International Organizations IAEA, NEA/OECD

LICENSING

NGNP Priority Licensing Topics

■ NGNP interactions with NRC are focused on four key areas:

- Event selection process
- Radiological source term
- Containment functional performance and defense in depth
- Emergency planning

■ Related NGNP White Papers submitted to NRC:

- Defense in Depth (Dec 2009)
- Fuel Qualification (July 2010)
- Mechanistic Source Terms (July 2010)
- Licensing Basis Event Selection (Sep 2010)
- Safety Classification of Structures, Systems and Components (Sep 2010)
- Emergency Planning Requirements (Oct 2010)
- Use of PRA, including integrated risk methods (Sep 2011)
- HTGR Safety Basis Overview (Sep 2011)

Licensing Path Forward

Nuclear Energy

- Engage NRC on disposition of NGNP priority regulatory framework development topics, including common understanding of technology issues
 - Addressing and resolving open issues from NRC assessment reports
 - Public meetings as needed
 - Continuing R&D collaborations with NRC
- Continue HTGR Combined License Content Guide development
 - Assures common applicant and NRC expectations regarding required contents of future license applications
- Implement an NRC-approved Appendix B Quality Assurance Program

SUMMARY

NGNP Path Forward

- Continue R&D in fuels, materials and code validation experiments
- Continue licensing efforts with the NRC
- Issue solicitation for development of an economic/business analysis regarding commercializing HTGRs, and providing data and analysis to DOE that could inform DOE on R&D efforts